Remote Sensing (Jan 2023)

Joint Use of Optical and Radar Remote Sensing Data for Characterizing the 2020 Aniangzhai Landslide Post-Failure Displacement

  • Jianming Kuang,
  • Alex Hay-Man Ng,
  • Linlin Ge,
  • Graciela Isabel Metternicht,
  • Stuart Raymond Clark

DOI
https://doi.org/10.3390/rs15020369
Journal volume & issue
Vol. 15, no. 2
p. 369

Abstract

Read online

The ancient Aniangzhai (ANZ) landslide in Danba County, Sichuan Province of southwest China was reactivated after a series of complex hazard events that occurred in June 2020. Since then, and until June 2021, emergency engineering work was carried out to prevent the further failure of the reactivated landslide. This study investigates the potential of joint use of time series Interferometric Synthetic Aperture Radar (InSAR) and optical pixel offset tracking (POT) to assess deformation characteristic and spatial-temporal evolution of the reactivated ANZ landslide during the post-failure stage. The relationships between sun illumination differences, temporal baseline of correlation pairs and the uncertainties were deeply explored. Surface deformation along the line-of-sight (LoS) direction was retrieved by the time series InSAR processing with the two Sentinel-1 datasets, revealing a maximum deformation rate up to 190 mm/year. The large horizontal displacements were also detected from the POT processing using 11 optical images acquired by the PlanetScope satellite (3 m spatial resolution), showing a significant increase of about 24 m between 24 June 2020 and 11 June 2021. The time series analysis from the InSAR and optical POT results revealed that the reactivated ANZ landslide body is gradually slowing down to a steady deformation status since its occurrence in August 2020, indicating the effectiveness of engineering work on the prevention of further landslide. A slight acceleration was detected from both InSAR and optical POT time series analysis between May 2021 and June 2021, which could be caused by the increased rainfall in May 2021.

Keywords