Redox Biology (Apr 2023)
Transferrin receptor 2 deficiency promotes macrophage polarization and inflammatory arthritis
Abstract
Objective: Rheumatoid arthritis is an inflammatory joint disease in which synovial iron deposition has been described. Transferrin receptor 2 (Tfr2) represents a critical regulator of systemic iron levels. Loss of Tfr2 function in humans and mice results in iron overload. As iron contributes to inflammatory processes, we investigated whether Tfr2-deletion affects the pathogenesis of inflammatory arthritis in an iron-dependent manner. Methods: Using a global and conditional genetic disruption of Tfr2, we assessed the relevance of Tfr2 in K/BxN serum-transfer arthritis (STA) and macrophage polarization. Results: Male Tfr2−/− mice subjected to STA developed pronounced joint swelling, and bone erosion as compared to Tfr2+/+ littermate-controls (P < 0.01). Furthermore, an increase of neutrophils and macrophages/monocytes was observed in the inflammatory infiltrate within the paws of Tfr2−/− mice. To elucidate whether Tfr2 in myeloid cells has a direct role in the pathogenesis of arthritis or whether the effects were mediated via the systemic iron overload, we induced STA in Tfr2fl/fl-LysMCre + mice, which showed normal iron-loading. Cre + female mice displayed increased disease development compared to Cre-controls. As macrophages regulate iron availability and innate immunity, we hypothesized that Tfr2-deficiency would polarize macrophages toward a pro-inflammatory state (M1) that contributes to arthritis progression. In response to IFN-γ stimulation, Tfr2−/− macrophages showed increased expression of M1-like cytokines, IFN-γ-target genes, nitric-oxide production, and prolonged STAT1 activation compared to Tfr2+/+ macrophages (P < 0.01), while pre-treatment with ruxolitinib abolished Tfr2-driven M1-like polarization. Conclusion: Taken together, these findings suggest a protective role of Tfr2 in macrophages on the progression of arthritis via suppression of M1-like polarization.