Journal of Foot and Ankle Research (Jan 2023)
How to measure children's feet: 3D foot scanning compared with established 2D manual or digital methods
Abstract
Abstract Background In infants and young children, a wide heterogeneity of foot shape is typical. Therefore, children, who are additionally influenced by rapid growth and maturation, are a very special cohort for foot measurements and the footwear industry. The importance of foot measurements for footwear fit, design, as well as clinical applications has been sufficiently described. New measurement techniques (3D foot scanning) allow the assessment of the individual foot shape. However, the validity in comparison to conventional methods remains unclear. Therefore, the purpose of this study was to compare 3D foot scanning with two established measurement methods (2D digital scanning/manual foot measurements). Methods Two hundred seventy seven children (125 m / 152 f; mean ± SD: 8.0 ± 1.5yrs; 130.2 ± 10.7cm; 28.0 ± 7.3kg) were included into the study. After collection of basic data (sex, age (yrs), body height (cm), body weight (kg)) geometry of the right foot was measured in static condition (stance) with three different measurement systems (fixed order): manual foot measurement, 2D foot scanning (2D desk scanner) and 3D foot scanning (hand‐held 3D scanner). Main outcomes were foot length, foot width (projected; anatomical; instep), heel width and anatomical foot ball breadth. Analysis of variances for dependent samples was applied to test for differences between foot measurement methods (Post‐hoc analysis: Tukey‐Kramer‐Test; α=0.05). Results Significant differences were found for all outcome measures comparing the three methods (p<0.0001). The span of foot length differences ranged from 3 to 6mm with 2D scans showing the smallest and 3D scans the largest deviations. Foot width measurements in comparison of 3D and 2D scans showed consistently higher values for 3D measurements with the differences ranging from 1mm to 3mm. Conclusions The findings suggests that when comparing foot data, it is important to consider the differences caused by new measurement methods. Differences of about 0.6cm are relevant when measuring foot length, as this is the difference of a complete shoe size (Parisian point). Hence, correction factors may be required to compare the results of different measurements appropriately. The presented results may have relevance in the field of ergonomics (shoe industry) as well as clinical practice.
Keywords