East European Journal of Physics (Feb 2013)
Virtual Water Molecule Dissociation in External Electromagnetic Fields
Abstract
The model is proposed for describing a real water molecule by its two-dimensional analog, namely, the virtual molecule (VM). The proposed VM model provides the condition of coincidence between the fundamental eigenfrequencies of the real molecule and its virtual analog. The other VM parameters (bond length and atomic mass) are renormalized so that the molecule should steadily exist for a long time interval. Linear dynamics of VM atoms in the field of a monochromatic electromagnetic wave has been investigated. It is shown that under the action of an external electromagnetic field on the molecule at a resonance frequency, secular modes of vibrations are observed. The last ones are characterized by a time-linear growth of atomic oscillation amplitudes. The influence of the turn on of an external force at the time of stabilization of eigenfrequencies of the VM on the stability of VM atomic oscillations were made. It is shown that in some cases breaking of one of the VM bonds inevitably leads to the VM dissociation as a whole. As a result of numerical simulation, it has been established that the bond breaking has a threshold character, i.e., dissociation is not observed at the external force, which is below a certain value. In the region of forces exceeding the threshold values, the variation in the external electromagnetic field frequency is insensitive to the resonance effects that are due to the presence of dedicated frequencies of the VM. It is demonstrated that in the region, where the H–O bond breaking always takes place, there exist the H–H bond stability islands. Optimum parameters of VM dissociation have been determined.