Annals of Geophysics (Jun 1996)

Neural networks and dynamical system techniques for volcanic tremor analysis

  • R. Carniel

DOI
https://doi.org/10.4401/ag-3967
Journal volume & issue
Vol. 39, no. 2

Abstract

Read online

A volcano can be seen as a dynamical system, the number of state variables being its dimension N. The state is usually confined on a manifold with a lower dimension f, manifold which is characteristic of a persistent «structural configuration». A change in this manifold may be a hint that something is happening to the dynamics of the volcano, possibly leading to a paroxysmal phase. In this work the original state space of the volcano dynamical system is substituted by a pseudo state space reconstructed by the method of time-delayed coordinates, with suitably chosen lag time and embedding dimension, from experimental time series of seismic activity, i.e. volcanic tremor recorded at Stromboli volcano. The monitoring is done by a neural network which first learns the dynamics of the persistent tremor and then tries to detect structural changes in its behaviour.

Keywords