Molecules (Sep 2024)
Towards Nickel–NHC Fluoro Complexes—Synthesis of Imidazolium Fluorides and Their Reactions with Nickelocene
Abstract
While hundreds of complexes of the general formula [Ni(η5-C5H5)(NHC)(X)] exist (NHC = a N-heterocyclic carbene, X = Cl, Br, I), none is yet known with X = F. We attempted to prepare such a species by reacting nickelocene with imidazolium fluorides. Three imidazolium fluorides (ImH)+ F− [Im = (N,N′-bis-(R)-imidazolium: 1a, IMe, R = Me; 1b, IMes, R = 2,4,6-trimethylphenyl; 1c, IPr, R = 2,6-diisopropylphenyl)] were prepared and characterized by spectroscopic methods. In addition, the salts 1b [(IMesH)+ F−] and 1c [(IPrH)+ F−] were subjected single-crystal X-ray diffraction experiments. The reactions of these imidazolium fluorides with nickelocene did not lead to [Ni(η5-C5H5)(NHC)(F)] species. Instead, the reaction of 1a [(IMeH)+ F−] and 1b [(IMesH)+ F−] with nickelocene led to the salt 2 [Ni(η5-C5H5)(IMe)2]+ F− and to the square planar complex 3atrans-[NiF2(IMes)2] respectively. Both complexes were characterized spectroscopically and by single crystal X-ray diffraction. All four X-ray diffraction studies reveal hydrogen bonding and hydrogen interactions with the F atom or anion, and in some cases with solvent molecules of crystallization, and these phenomena are all discussed. Complex 2, in particular, exhibited a wide range of interesting H-bonded interactions in the solid state. Complexes 2 and 3a were tested as catalysts for Suzuki–Miyaura coupling but were not promising: complex 2 was inactive, and while 3a did indeed catalyze the reaction, it gave widely diverging results owing to its instability in solution.
Keywords