Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
Amit Mandoli
Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
Nicolas Cagnard
Sorbonne Universités, Université Paris Descartes, Bioinformatics Platform, Paris, France
Guillaume Hypolite
Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
Ludovic Lhermitte
Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
Els Verhoeyen
CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, INSERM U1111, Lyon, France; Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
Vahid Asnafi
Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
Niall Dillon
Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
Elizabeth Macintyre
Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
Joost H.A. Martens
Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
Jonathan Bond
Université Paris Descartes Sorbonne Cité, Institut Necker Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, Paris, France; Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France; Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland; National Children’s Research Centre, Children’s Health Ireland at Crumlin, Dublin, Ireland; Corresponding author
Summary: Mutations and deletions of polycomb repressive complex (PRC) components are increasingly recognized to affect tumor biology in a range of cancers. However, little is known about how genetic alterations of PRC-interacting molecules such as the core binding factor (CBF) complex influence polycomb activity. We report that the acute myeloid leukemia (AML)-associated CBFβ-SMMHC fusion oncoprotein physically interacts with the PRC1 complex and that these factors co-localize across the AML genome in an apparently PRC2-independent manner. Depletion of CBFβ-SMMHC caused substantial increases in genome-wide PRC1 binding and marked changes in the association between PRC1 and the CBF DNA-binding subunit RUNX1. PRC1 was more likely to be associated with actively transcribed genes in CBFβ-SMMHC-expressing cells. CBFβ-SMMHC depletion had heterogeneous effects on gene expression, including significant reductions in transcription of ribosomal loci occupied by PRC1. Our results provide evidence that CBFβ-SMMHC markedly and diversely affects polycomb recruitment and transcriptional regulation across the AML genome. : Cordonnier et al. report a physical and functional interaction between the leukemia-associated fusion protein CBFβ-SMMHC and polycomb repressive complex (PRC) 1. Their findings provide evidence that cancer-associated alterations in molecules that normally interact with epigenetic factors can lead to subversion of transcriptional regulation in malignant cells. Keywords: acute myeloid leukemia, core binding factor, oncogene, polycomb, epigenetic regulation