Microbiology Spectrum (Feb 2023)
Stability of the COVID-19 At-Home Test after Exposure to Extreme Temperatures
Abstract
ABSTRACT To ensure sufficient sensitivity and specificity of lateral flow tests for the detection of SARS-CoV-2 antigen, manufacturers recommend appropriate conditions for storage, including a temperature range. However, there is a high likelihood that kits will be exposed to temperatures outside of this range during transit to some regions. In this prospective study, we evaluated the sensitivity and specificity of the COVID-19 At-Home Test kits (manufactured by SD Biosensor/distributed by Roche) currently being delivered through a US Government program, after exposure to a range of hot and cold temperatures. COVID-19 At-Home Test kits were stored at up to 5 different temperatures: frozen (−4.0°F [−20.0°C]), refrigerated (42.8°F [6.0°C]), room temperature (68.0°F [20.0°C]), warm (98.0°F [36.7°C]), and excessive heat (118.0 to 126.0°F [47.8 to 52.2°C]) for 24 h and left at room temperature for 60, 90, or 120 min before use. Test kits were also stored for 48 h, 1 week, or 2 weeks in frozen, warm, and excessive heat conditions, and left for 60 or 120 min before use. In each scenario (storage temperature + time at room temperature), 5 positive and 5 negative control samples were applied, and line intensity was recorded using a color scale (0 to 100%). In every scenario, every positive sample resulted in strong signal intensity (≥26%), and every negative sample returned a negative result. This study suggests that exposure of up to 2 weeks to extreme temperatures, such as those that may occur in transit, does not impact the stability of the COVID-19 At-Home Test. IMPORTANCE COVID-19 At-Home Test kits may be exposed to extreme temperatures in transit, which may impact test sensitivity and specificity. We investigated assay ability to identify SARS-CoV-2 antigen after 24 h to 2 weeks in frozen, refrigerated, room temperature, warm, or excessive heat conditions. The assay correctly identified all positive and negative samples in all scenarios. This study suggests that exposure of up to 2 weeks to extreme temperatures, such as those that may occur in transit, does not impact the stability of the COVID-19 At-Home Test.
Keywords