International Journal of Antennas and Propagation (Jan 2020)
Design and Analysis of a Five-Band Polarization-Insensitive Metamaterial Absorber
Abstract
A five-band metamaterial absorber (MMA) is presented. The proposed absorber consists of a three-layer structure of the top metal resonator, intermediate dielectric layer, and bottom metal plane. The top structure takes the centroid as the center and spreads out in a three-pronged shape with an average of 360°, and the ends bifurcate again. The calculation was carried out by the professional software to iteratively optimize the absorption effect of MMA in the microwave range. The results show that the MA has five peaks at resonant frequencies of 5.984 GHz, 12.232 GHz, 18.128 GHz, 18.414 GHz, and 20.592 GHz, with peaks of 0.9925, 0.9968, 0.9783, 0.9754, and 0.9975. By analyzing the electromagnetic field and surface current distribution of the absorber, the absorption mechanism is further verified, and the corresponding influence on the absorption spectrum is studied according to different polarization angles and incident angles. The effects of different resonator structure size and dielectric layer thickness on absorption rate were also discussed, and the distribution of electromagnetic fields is analyzed to reveal the existence of electric dipole resonance and magnetic resonance. Through comparing experiments and simulations, it is found that the peaks of the 1st, 2nd, and 5th have smaller absorption errors and frequency deviation, while the peaks of the 3rd and 4th have large ones. The five-band absorber has potential application in multiband electromagnetic stealth, bionic sensor, thermal radiation measuring instrument, and so on.