Open Heart (Aug 2025)
Adverse cardiovascular events in coronary Plaques not undeRgoing pErcutaneous coronary intervention evaluateD with optIcal Coherence Tomography. The PREDICT-AI risk model
- ,
- Gianluca Campo,
- Raffaele Piccolo,
- Roberto Scarsini,
- Massimo Mancone,
- Simone Biscaglia,
- Ovidio De Filippo,
- Fabrizio D'Ascenzo,
- Enrico Cerrato,
- Enrico Fabris,
- Maciej Lesiak,
- Fabrizio Ugo,
- Francesco Costa,
- FRANCESCO BURZOTTA,
- Pawel Gasior,
- Gioel Gabrio Secco,
- Gianluca Caiazzo,
- Shengxian Tu,
- Wojciech Wańha,
- Stanislaw Bartuś,
- Francesco Bruno,
- Miao Chu,
- Federico Giacobbe,
- Wojtek Wojakowski,
- Riccardo Improta,
- Stefano Siliano,
- Francesco Bianchini,
- Maddalena Immobile Molaro,
- Michela Sperti,
- Camilla Cardaci,
- Simone Zecchino,
- Marco Pavani,
- Rocco Vergallo,
- Marco Mennuni,
- Alessio Mattesini,
- Paolo Canova,
- Alberto Boi,
- Umberto Morbiducci,
- Marco Deriu,
- Claudio Chiastra,
- Pawel Pawlus,
- Edoardo Elia,
- Maria Federica Crociani,
- Carlo Carbone,
- Vincenzo Castaldo Tuccillo,
- Elodi Bacci,
- Gianluca Di Pietro,
- Marco Licciardi,
- Giustina Iuvara,
- Sylwia Iwańczyk,
- ShahSyed Taimoor Hussain,
- Giulia Di Marcantonio,
- Konstantinos Panagiotopoulos,
- Karim Kassem,
- Giuseppe De Nisco,
- Jan Roczniak
Affiliations
- Gianluca Campo
- UO Cardiologia, Azienda Ospedaliero–Universitaria di Ferrara Arcispedale Sant’Anna, Cona, Italy
- Raffaele Piccolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Roberto Scarsini
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- Massimo Mancone
- Department of Cardiovascular, Respiratory, Nephrological and Geriatrical Sciences, University of Rome La Sapienza, Roma, Italy
- Simone Biscaglia
- UO Cardiologia, Azienda Ospedaliero–Universitaria di Ferrara Arcispedale Sant’Anna, Cona, Italy
- Ovidio De Filippo
- Azienda Ospedaliero–Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
- Fabrizio D'Ascenzo
- Azienda Ospedaliero–Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
- Enrico Cerrato
- Rivoli Hospital, Rivoli, Italy
- Enrico Fabris
- Cardiology Department, Azienda Sanitaria Universitaria Giuliano Isontina Dipartimento ad Attività Integrata Cardiotoracovascolare, Trieste, Italy
- Maciej Lesiak
- Fabrizio Ugo
- Interventional Cardiology, PO S Andrea di Vercelli, Vercelli, Italy
- Francesco Costa
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
- FRANCESCO BURZOTTA
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Pawel Gasior
- Medical University of Silesia, Katowice, UK
- Gioel Gabrio Secco
- Interventional Cardiology, Univ Piemonte Orientale, Alessandria, Italy
- Gianluca Caiazzo
- Shengxian Tu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Wojciech Wańha
- 24 Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
- Stanislaw Bartuś
- Francesco Bruno
- Azienda Ospedaliero–Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
- Miao Chu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Federico Giacobbe
- Wojtek Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
- Riccardo Improta
- Stefano Siliano
- Francesco Bianchini
- Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Maddalena Immobile Molaro
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Michela Sperti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin, Italy
- Camilla Cardaci
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin, Italy
- Simone Zecchino
- Rivoli Hospital, Rivoli, Italy
- Marco Pavani
- Rivoli Hospital, Rivoli, Italy
- Rocco Vergallo
- Dipartimento Cardio-Toraco-Vascolare, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Marco Mennuni
- University Hospital Maggiore della Carità, Novara, Italy
- Alessio Mattesini
- AOU Careggi, Florence, Italy
- Paolo Canova
- Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
- Alberto Boi
- Azienda Ospedaliera Brotzu, Cagliari, Italy
- Umberto Morbiducci
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin, Italy
- Marco Deriu
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin, Italy
- Claudio Chiastra
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin, Italy
- Pawel Pawlus
- Edoardo Elia
- Maria Federica Crociani
- Carlo Carbone
- Vincenzo Castaldo Tuccillo
- Elodi Bacci
- Gianluca Di Pietro
- Marco Licciardi
- Giustina Iuvara
- Sylwia Iwańczyk
- ShahSyed Taimoor Hussain
- Giulia Di Marcantonio
- Konstantinos Panagiotopoulos
- Karim Kassem
- Giuseppe De Nisco
- Jan Roczniak
- DOI
- https://doi.org/10.1136/openhrt-2025-003389
- Journal volume & issue
-
Vol. 12,
no. 2
Abstract
Introduction Most acute coronary syndromes (ACS) originate from coronary plaques that are angiographically mild and not flow limiting. These lesions, often characterised by thin-cap fibroatheroma, large lipid cores and macrophage infiltration, are termed ‘vulnerable plaques’ and are associated with a heightened risk of future major adverse cardiovascular events (MACE). However, current imaging modalities lack robust predictive power, and treatment strategies for such plaques remain controversial.Methods and analysis The PREDICT-AI study aims to develop and externally validate a machine learning (ML)-based risk score that integrates optical coherence tomography (OCT) plaque features and patient-level clinical data to predict the natural history of non-flow-limiting coronary lesions not treated with percutaneous coronary intervention (PCI). This is a multicentre, prospective, observational study enrolling 500 patients with recent ACS who undergo comprehensive three-vessel OCT imaging. Lesions not treated with PCI will be characterised using artificial intelligence (AI)-based plaque analysis (OctPlus software), including quantification of fibrous cap thickness, lipid arc, macrophage presence and other microstructural features. A three-step ML pipeline will be used to derive and validate a risk score predicting MACE at follow-up. Outcomes will be adjudicated blinded to OCT findings. The primary endpoint is MACE (composite of cardiovascular death, myocardial infarction, urgent revascularisation or target vessel revascularisation). Event prediction will be assessed at both the patient level and plaque level.Ethics and dissemination The PREDICT-AI study will generate a clinically applicable, AI-driven risk stratification tool based on high-resolution intracoronary imaging. By identifying high-risk, non-obstructive coronary plaques, this model may enhance personalised management strategies and support the transition towards precision medicine in coronary artery disease.