Energies (Jan 2022)

Evaluation of Prediction Models for the Physical Properties in Fire-Flooding Exhaust Reinjection Process

  • Yong Wang,
  • Mingliang Chang,
  • Long Chen,
  • Shouxi Wang,
  • Shihao Fan,
  • Dongyang Hua

DOI
https://doi.org/10.3390/en15020562
Journal volume & issue
Vol. 15, no. 2
p. 562

Abstract

Read online

The reinjection of the fire-flooding exhaust is a novel disposal process for handling the exhaust produced by the in-situ combustion technology. For reasonable process design and safe operation, it is of great significance to select an optimum property calculation method for the fire-flooding exhaust. However, due to the compositional particularity and the wide range of operating parameters during reinjection, the state equations in predicting the exhaust properties over the wide range of operating parameters have not been studied clearly yet. Hence, this paper investigates the applicability of several commonly-used equations of state, including the Soave–Redlich–Kwong equation, Peng–Robinson equation, Lee–Kesler–Plocker equation, Benedict–Webb–Rubin–Starling equation, and GERG-2008 equations. Employing Aspen Plus software, the gas densities, compressibility factors, volumetric coefficients, and dew points for five exhaust compositions are calculated. In comparison with the experimental data comprehensively, the result indicates that the Soave–Redlich–Kwong equation shows the highest precision over a wide range of temperature and pressure. The mean absolute percentage error for the above four parameters is 3.84%, 5.17%, 5.53%, and 4.33%, respectively. This study provides a reference for the accurate calculation of the physical properties of fire-flooding exhausts when designing and managing a reinjection system of fire-flooding exhaust.

Keywords