Neuroimaging of Parkinson's disease by quantitative susceptibility mapping
Xiaojun Guan,
Marta Lancione,
Scott Ayton,
Petr Dusek,
Christian Langkammer,
Minming Zhang
Affiliations
Xiaojun Guan
Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
Marta Lancione
Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
Scott Ayton
Florey Institute, The University of Melbourne, Australia
Petr Dusek
Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia; Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Auenbruggerplatz 22, Prague 8036, Czechia
Christian Langkammer
Department of Neurology, Medical University of Graz, Austria; Correspondence authors.
Minming Zhang
Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China; Correspondence authors.
Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.