Heliyon (Jan 2025)
Age-related differences in eye blink-related neural activity and functional connectivity during driving
Abstract
Driving is a complex task that requires effective neural processing and coordination, which degrade with aging. Previous studies suggest that age-related changes in cognitive and motor functions can influence driving performance. Herein, we investigated age-related differences and differences between reactive and proactive driving in blink behavior-related potentials, and source-level functional connectivity. Seventy-six subjects participated in two experiments with reactive (19 young, 28 older) and proactive (16 young, 13 older) driving scenarios, consisting of a lane-keeping task with either varying levels of crosswind or curve road, respectively. While blink rate analysis revealed no significant age or driving condition effects, blink duration was notably longer in younger participants. Also, significant age effects were observed in blink-related potentials, mainly in the frontal N2 and occipital P0 and P2 components, with higher amplitudes in younger participants, signifying more efficient neural processing. The parietal N2 component showed significant age and interaction effects, with older individuals showing higher amplitudes in reactive conditions, potentially due to increased cognitive effort and attentional demands. Furthermore, functional connectivity analysis revealed that aging most significantly affects the visual network in the beta band. More specifically, younger participants showed an increase in the clustering coefficient and degrees of the networks, reflecting more robust neural network integration. This pattern of higher connectivity measures in younger participants was also observed in the default mode, control, and limbic networks. Conversely, the dorsal attention network in the theta band showed an increased degree and clustering coefficient in older adults, which could indicate a compensatory mechanism for maintaining cognitive demands. This study highlights the impact of aging on neural activity and connectivity characteristics during driving and emphasizes the requirement of age-tailored interventions, aimed to improve driving safety.