Toxins (Apr 2019)

An Attempt to Characterize the Ciguatoxin Profile in <i>Seriola fasciata</i> Causing Ciguatera Fish Poisoning in Macaronesia

  • Pablo Estevez,
  • David Castro,
  • Ana Pequeño-Valtierra,
  • José M. Leao,
  • Oscar Vilariño,
  • Jorge Diogène,
  • Ana Gago-Martínez

DOI
https://doi.org/10.3390/toxins11040221
Journal volume & issue
Vol. 11, no. 4
p. 221

Abstract

Read online

Ciguatera Fish Poisoning is a worldwide concern caused by the consumption of fish contaminated with ciguatoxins not only in endemic regions in the Pacific Ocean or the Caribbean Sea but also in emerging areas of Macaronesia on the eastern Atlantic. The recent emergence of these toxins in other coastal areas worldwide, prompted the need for the characterization of the risk in these areas. This Ciguatera Fish Poisoning risk has been recently identified as a potential threat in subtropical areas of the Atlantic coast and scientific efforts are being focused in the identification and confirmation of the toxins involved in this potential risk. Neuroblastoma cell assay has been widely used for the evaluation of the toxicity in several marine biotoxin groups, and found to be a very useful tool for toxicity screening. LC-MS/MS has been also used for confirmatory purposes although the main limitation of the advances on LC-MS/MS development is due to commercial unavailability of reference materials and hampers method implementation and validation or even confirmation of the ciguatoxins (CTXs) responsible for the toxic profiles. While neuroblastoma cell assay (N2a) is typically used for toxicity screening as mentioned above, being necessary to confirm this N2a toxicity by LC-MS/MS, this study is designed using N2a as a tool to confirm the toxicity of the fractions obtained corresponding to potential CTXs analogues according to the analysis by LC-MS/MS. With this aim, an amberjack sample (Seriola fasciata) from Selvagen Islads (Portugal) and implicated in Ciguatera Fish Poisoning was analyzed by LC-MS/MS and Caribbean Ciguatoxins were found to be mainly responsible for the toxicity. N2a was used in this work as a tool to help in the confirmation of the toxicity of fractions obtained by HPLC. Caribbean Ciguatoxin-1 was found as the main analogue responsible for the N2a toxicity while three Caribbean Ciguatoxin-1 (C-CTX1) metabolites which contribute to the total toxicity were also identified.

Keywords