MATEC Web of Conferences (Jan 2022)
Effects of energy density on the microstructure evolution of TiC/Ti6Al4V-ELI metal composite fabricated with laser metal deposition
Abstract
This study investigated the microstructural evolution of Ti6Al4V-ELI reinforced with TiC, fabricated via in-situ laser metal deposition technique. The 3.85% volume fraction TiC/Ti6Al4V-ELI metal composite samples were fabricated at two different energy densities (ED). It was observed that in-situ reaction resulted in various morphologies (unmelted or partially melted, chain-shaped eutectic, granular eutectic, granular primary eutectic, and dendritic primary) of TiC embedded with the beta grain boundary and the acicular alpha prime matrix. The size of dendritic structures decreases with respect to ED. Additionally, the hardness average of 457.59 ± 39.73 and 455.08 ± 18.03 HV0.3 for 96 and 102 J/mm2 ED respectively.