Remote Sensing (Dec 2024)

Ensemble Learning for Urban Flood Segmentation Through the Fusion of Multi-Spectral Satellite Data with Water Spectral Indices Using Row-Wise Cross Attention

  • Han Xu,
  • Alan Woodley

DOI
https://doi.org/10.3390/rs17010090
Journal volume & issue
Vol. 17, no. 1
p. 90

Abstract

Read online

In post-flood disaster analysis, accurate flood mapping in complex riverine urban areas is critical for effective flood risk management. Recent studies have explored the use of water-related spectral indices derived from satellite imagery combined with machine learning (ML) models to achieve this purpose. However, relying solely on spectral indices can lead these models to overlook crucial urban contextual features, making it difficult to distinguish inundated areas from other similar features like shadows or wet roads. To address this, our research explores a novel approach to improve flood segmentation by integrating a row-wise cross attention (CA) module with ML ensemble learning. We apply this method to the analysis of the Brisbane Floods of 2022, utilizing 4-band satellite imagery from PlanetScope and derived spectral indices. Applied as a pre-processing step, the CA module fuses a spectral band index into each band of a peak-flood satellite image using a row-wise operation. This process amplifies subtle differences between floodwater and other urban characteristics while preserving complete landscape information. The CA-fused datasets are then fed into our proposed ensemble model, which is constructed using four classic ML models. A soft voting strategy averages their binary predictions to determine the final classification for each pixel. Our research demonstrates that CA datasets can enhance the sensitivity of individual ML models to floodwater in complex riverine urban areas, generally improving flood mapping accuracy. The experimental results reveal that the ensemble model achieves high accuracy (approaching 100%) on each CA dataset. However, this may be affected by overfitting, which indicates that evaluating the model on additional datasets may lead to reduced accuracy. This study encourages further research to optimize the model and validate its generalizability in various urban contexts.

Keywords