Supply Chain Analytics (Dec 2024)

An explainable artificial intelligence model for predictive maintenance and spare parts optimization

  • Ufuk Dereci,
  • Gülfem Tuzkaya

Journal volume & issue
Vol. 8
p. 100078

Abstract

Read online

Maintenance strategies are vital for industrial and manufacturing systems. This study considers a proactive maintenance strategy and emphasizes using analytics and data science. We propose an Explainable Artificial Intelligence (XAI) methodology for predictive maintenance. The proposed method utilizes a machine learning project cycle and Python libraries to interpret the results using the Local Interpretable Model-agnostic Explanations (LIME) method. We also introduce an early concept of spare parts management, presenting insights from predictive maintenance outcomes and providing explanations for decision-makers to enhance their understanding of the influential factors behind predictions. This study demonstrates that utilizing machine learning models in predictive maintenance is highly beneficial; however, the binary outcomes of these models can be misunderstood by decision-makers. Detailed explanations provided to decision-makers will directly impact maintenance decisions and improve spare part management.

Keywords