In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

Effects of climate change on agriculture water demand in lower Pak Phanang river basin, southern part of Thailand

MATEC Web of Conferences. 2018;192:03043 DOI 10.1051/matecconf/201819203043

 

Journal Homepage

Journal Title: MATEC Web of Conferences

ISSN: 2261-236X (Online)

Publisher: EDP Sciences

LCC Subject Category: Technology: Engineering (General). Civil engineering (General)

Country of publisher: France

Language of fulltext: French, English

Full-text formats available: PDF

 

AUTHORS


Kaewthong Natapon (Graduate Student, School of Engineering and Resources, Walailak University)

Ditthakit Pakorn (Assistant Professor, School of Engineering and Resources, Walailak University)

EDITORIAL INFORMATION

Editorial review

Editorial Board

Instructions for authors

Time From Submission to Publication: 6 weeks

 

Abstract | Full Text

The aim of the research is to analyse the effects on agricultural water demand in the Lower Pak Phanang River Basin area due to climate change. The climate data used in the analysis were rainfall, maximum, minimum, and average temperatures. The climate datasets were obtained from statistical downscaling of global circulation model under the CMIP5 project by means of bias correction with Optimizing Quantile Mapping implemented by the Hydro and Agro Informatics Institute. To determine agriculture water demand, reference evapotranspiration (ETo) based on Hargreaves method was calculated for both baseline climate data (1987-2015) and forecasted climate data in 2038. For agriculture water demand in the Pak Phanang river basin, we considered paddy field, palm oil, rubber, grapefruit, orchard, vegetable, ruzy and biennial crop, based on land use data of the Land Development Department of Thailand in 2012. The results showed that forecasted agriculture water demand in 2038 with existing land use data in 2012 will be increased with the average of 18.9% or 61.78 MCM as compared to baseline climate condition. Both water demand and supply management measures would be suitably prepared before facing unexpected situation.