Pharmaceutics (Dec 2023)

Enhancing T Cell and Antibody Response in Mucin-1 Transgenic Mice through Co-Delivery of Tumor-Associated Mucin-1 Antigen and TLR Agonists in C3-Liposomes

  • Ameneh Arabi,
  • Shahab Aria (Soltani),
  • Brandon Maniaci,
  • Kristine Mann,
  • Holly Martinson,
  • Max Kullberg

DOI
https://doi.org/10.3390/pharmaceutics15122774
Journal volume & issue
Vol. 15, no. 12
p. 2774

Abstract

Read online

Mucin-1 (MUC1) is a highly relevant antigen for cancer vaccination due to its overexpression and hypo-glycosylation in a high percentage of carcinomas. To enhance the immune response to MUC1, our group has developed C3-liposomes that encapsulate the MUC1 antigen along with immunostimulatory compounds for direct delivery to antigen-presenting cells (APCs). C3-liposomes bind complement C3, which interacts with C3-receptors on APCs, resulting in liposomal uptake and the delivery of tumor antigens to APCs in a manner that mimics pathogenic uptake. In this study, MUC1 and Toll-like receptor (TLR) agonists were encapsulated in C3-liposomes to provoke an immune response in transgenic mice tolerant to MUC1. The immune response to the C3-bound MUC1 liposomal vaccine was assessed by ELISA, ELISpot, and flow cytometry. Co-administering TLR 7/8 agonists with MUC1 encapsulated in C3-liposomes resulted in a significant antibody response compared to non-encapsulated MUC1. This antibody response was significantly higher in females than in males. The co-encapsulation of three TLR agonists with MUC1 in C3-liposomes significantly increased antibody responses and eliminated sex-based differences. Furthermore, this immunization strategy resulted in a significantly increased T cell-response compared to other treatment groups. In conclusion, the co-delivery of MUC1 and TLR agonists via C3-liposomes greatly enhances the immune response to MUC1, highlighting its potential for antigen-specific cancer immunotherapy.

Keywords