Oceanologia (Apr 2021)

Microphytobenthic primary production on exposed coastal sandy sediments of the Southern Baltic Sea using ex situ sediment cores and oxygen optodes

  • Kana Kuriyama,
  • Sigrid Gründling-Pfaff,
  • Nora Diehl,
  • Jana Woelfel,
  • Ulf Karsten

Journal volume & issue
Vol. 63, no. 2
pp. 247 – 260

Abstract

Read online

The shallow coastal water zone of the tide-less southern Baltic Sea is dominated by exposed sandy sediments which are typically inhabited by microphytobenthic communities, but their primary production is poorly studied, and hence four stations between 3.0 and 6.2 m depth were investigated. Sediment cores were carefully taken to keep the natural layering and exposed in a controlled self-constructed incubator. Respiratory oxygen consumption and photosynthetic oxygen production were recorded applying planar oxygen optode sensors. We hypothesized that with increasing water depths the effects of wind- and wave-induced erosion and mixing of the upper sediment layer are dampened and expected higher microphytobenthic biomass and primary production in the incubated cores.Our data partly confirm this hypothesis, as cores sampled at the most exposed stations contained only 50% chlorophyll a m−2 compared to the deeper stations. However, primary production was highly variable, probably due to fluctuating sediment-disturbing conditions before the cores were taken. Due to these physical forces sand grains were highly mobile and rounded, and small epipsamic benthic diatoms dominated, which preferentially occurred in some cracks and crevices as visualized by scanning electron microscopy. The data fill an important gap in reliable production data for sandy sediments of the southern Baltic Sea, and point to the ecological importance and relevant contribution of microphytobenthic communities to the total primary production of this marine ecosystem. Oxygen planar optode sensor spots proved to be a reliable, sensitive and fast detection system for ex situ oxygen exchange measurements in the overlying water of intact sediment cores.

Keywords