Redox Report (Jan 2021)

Can thiol-based redox systems be utilized as parts for synthetic biology applications?

  • Ché S. Pillay,
  • Nolyn John

DOI
https://doi.org/10.1080/13510002.2021.1966183
Journal volume & issue
Vol. 26, no. 1
pp. 147 – 159

Abstract

Read online

Objectives Synthetic biology has emerged from molecular biology and engineering approaches and aims to develop novel, biologically-inspired systems for industrial and basic research applications ranging from biocomputing to drug production. Surprisingly, redoxin (thioredoxin, glutaredoxin, peroxiredoxin) and other thiol-based redox systems have not been widely utilized in many of these synthetic biology applications. Methods We reviewed thiol-based redox systems and the development of synthetic biology applications that have used thiol-dependent parts. Results The development of circuits to facilitate cytoplasmic disulfide bonding, biocomputing and the treatment of intestinal bowel disease are amongst the applications that have used thiol-based parts. We propose that genetically encoded redox sensors, thiol-based biomaterials and intracellular hydrogen peroxide generators may also be valuable components for synthetic biology applications. Discussion Thiol-based systems play multiple roles in cellular redox metabolism, antioxidant defense and signaling and could therefore offer a vast and diverse portfolio of components, parts and devices for synthetic biology applications. However, factors limiting the adoption of redoxin systems for synthetic biology applications include the orthogonality of thiol-based components, limitations in the methods to characterize thiol-based systems and an incomplete understanding of the design principles of these systems.

Keywords