Using Apparent Density of Paper from Hardwood Kraft Pulps to Predict Sheet Properties, based on Unsupervised Classification and Multivariable Regression Techniques
Ofélia Anjos,
Esperanza García-Gonzalo,
António J. A. Santos,
Rogério Simões,
Javier Martínez-Torres,
Helena Pereira,
Paulino José García-Nieto
Affiliations
Ofélia Anjos
Univ Tecn Lisboa, Ctr Estudos Florestais, Inst Super Agron, P-1349017 Lisbon, Portugal; Portugal
Esperanza García-Gonzalo
Facultad de Ciencias, Departamento de Matemática Aplicada, Universidad de Oviedo, 33005, Oviedo, Spain; Spain
António J. A. Santos
Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Portugal
Rogério Simões
Textile and Paper Materials Unit, Universidade da Beira Interior, 6201-001Covilhã, Portugal; Portugal
Javier Martínez-Torres
Centro Universitario de la Defensa, Academia General Militar, 50090 Zaragoza, Spain; Spain
Helena Pereira
Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Portugal
Paulino José García-Nieto
Facultad de Ciencias, Departamento de Matemática Aplicada, Universidad de Oviedo, 33005, Oviedo, Spain; Spain
Paper properties determine the product application potential and depend on the raw material, pulping conditions, and pulp refining. The aim of this study was to construct mathematical models that predict quantitative relations between the paper density and various mechanical and optical properties of the paper. A dataset of properties of paper handsheets produced with pulps of Acacia dealbata, Acacia melanoxylon, and Eucalyptus globulus beaten at 500, 2500, and 4500 revolutions was used. Unsupervised classification techniques were combined to assess the need to perform separated prediction models for each species, and multivariable regression techniques were used to establish such prediction models. It was possible to develop models with a high goodness of fit using paper density as the independent variable (or predictor) for all variables except tear index and zero-span tensile strength, both dry and wet.