European Journal of Medicinal Chemistry Reports (Aug 2022)

Impact of mono- and di-β-galactose moieties in in vitro / in vivo anticancer efficacy of pyropheophorbide-carbohydrate conjugates by photodynamic therapy

  • Mykhaylo Dukh,
  • Joseph Cacaccio,
  • Farukh A. Durrani,
  • Ishaan Kumar,
  • Ramona Watson,
  • Walter A. Tabaczynski,
  • Penny Joshi,
  • Joseph R. Missert,
  • Heinz Baumann,
  • Ravindra K. Pandey

Journal volume & issue
Vol. 5
p. 100047

Abstract

Read online

To investigate the impact of mono- and di-β-galactose moieties in tumor uptake and photodynamic therapy (PDT) efficacy, HPPH [3-(1′-hexyloxy)ethyl-3-devinylpyropheophorobide-a], the meso pyropheophorbide-a [3-ethyl-3-devinyl-pyropheophorbide-a], and the corresponding 20-benzoic acid analogs were used as starting materials. Reaction of the intermediates containing one or two carboxylic acid functionalities with 1-aminogalactose afforded the desired 172- or 20(4′)- mono- and 172, 20(4′)-di galactose conjugated photosensitizers (PSs) with and without a carboxylic acid group. The overall lipophilicity caused by the presence of galactose in combination with either an ethyl or (1′-hexyloxy)ethyl side chain at position-3 of the macrocycle made a significant difference in in vitro uptake by tumor cells and photoreaction upon light exposure. Interestingly, among the PSs investigated, compared to HPPH 1 the carbohydrate conjugates 2 and 11 in which β-galactose moieties are conjugated at positions 172 and 20(4′) of meso-pyro pheophorbide-a showed similar in vitro efficacy in FaDu cell lines, but in SCID mice bearing FaDu tumors (head & neck) Ps 11 gave significantly improved long-term tumor cure.

Keywords