Electronic Journal of Differential Equations (Mar 2013)
Positive solutions and global bifurcation of strongly coupled elliptic systems
Abstract
In this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain conditions on $f,g$ and allowing $h_1, h_2$ to be singular. We also consider the system egin{gather*} -Delta u= lambda ( a(x) u + b(x)v+ f_{1}(v)+ f_{2}(u) ) quad ext{in }Ome ga, \ -Delta v= lambda ( b(x)u+ c(x)v+ g_{1}(u)+ g_{2}(v) )quad ext{in }Omega , \ u =v=0 quad ext{on }partial Omega, end{gather*} and prove a Rabinowitz global bifurcation type theorem to this system.