Clinics (Jan 2009)

Predictive success factors for ct-guided fine needle aspiration biopsy of pulmonary lesions

  • Marcos Duarte Guimarães,
  • Rubens Chojniak,
  • Jefferson L Gross,
  • Almir G.V. Bitencourt

DOI
https://doi.org/10.1590/S1807-59322009001200002
Journal volume & issue
Vol. 64, no. 12
pp. 1139 – 1144

Abstract

Read online

OBJECTIVE: Computed tomography-guided percutaneous fine needle aspiration biopsy of lung lesions is a simple, safe and reproducible procedure. Currently, it is widely used to diagnose lung lesions. However, different factors can influence the success rates of this procedure. The purpose of this study was to determine the influence of radiological and procedural characteristics in predicting the success rates of computed tomography-guided fine needle aspiration biopsy of lung lesions. SUBJECTS AND METHODS: A retrospective study was developed and involved 340 patients who were submitted to a consecutive series of 362 computed tomography-guided fine needle aspiration biopsies of lung lesions, between July 1996 and June 2004, using 22-gauge needles (Chiba). Variables such as the radiological characteristics of the lesions, secondary pulmonary radiological findings, and procedural techniques were studied. RESULTS: For this study, 304 (84%) fine needle aspiration biopsies of lung lesions provided sufficient material for cytological evaluation. The variables that predicted sufficient material for cytological evaluation were lesions larger than 40 mm (p=0.02), lesions on the superior lung lobes (p=0.02), and suspicion of primary lung malignancy (p=0.03). From the multivariate analysis, the only predictive variable for success of the biopsies was localization on the superior lobes (p=0.01). CONCLUSIONS: Computed tomography-guided percutaneous fine needle aspiration biopsy of lung lesions showed greater rates of success in biopsies performed in patients with suspicion of primary lung malignancy, with lesions located in the superior lobes, and that have diameters equal to and larger than 40 mm.

Keywords