Membranes (Nov 2021)

Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment

  • Yi Ding,
  • Shiyuan Wang,
  • Hang Ma,
  • Binyu Ma,
  • Zhansheng Guo,
  • Hong You,
  • Junxue Mei,
  • Xuguang Hou,
  • Zhenlin Liang,
  • Zhipeng Li

DOI
https://doi.org/10.3390/membranes11110874
Journal volume & issue
Vol. 11, no. 11
p. 874

Abstract

Read online

The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment.

Keywords