Macromolecules with Different Charges, Lengths, and Coordination Groups for the Coprecipitation Synthesis of Magnetic Iron Oxide Nanoparticles as <i>T</i><sub>1</sub> MRI Contrast Agents
Cheng Tao,
Yanan Chen,
Danli Wang,
Yu Cai,
Qiang Zheng,
Lu An,
Jiaomin Lin,
Qiwei Tian,
Shiping Yang
Affiliations
Cheng Tao
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Yanan Chen
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Danli Wang
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Yu Cai
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Qiang Zheng
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Lu An
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Jiaomin Lin
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Qiwei Tian
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Shiping Yang
The Key Laboratory of Resource Chemistry of the Ministry of Education, The Shanghai Key Laboratory of Rare Earth Functional Materials, and The Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
Considerable efforts have been focused on the exploitation of macromolecule ligands for synthesis of magnetic Fe3O4 nanoparticles as T1 magnetic resonance imaging (MRI) contrast agents, but studies that concern macromolecule ligands with different charges and coordination groups are still limited. Herein, we used poly(acrylic acid) (PAA), poly(allylamine hydrochloride) (PAH), and polyvinyl alcohol (PVA), which possess negative, positive and neutral charges with carboxylic acid, amino and hydroxyl groups respectively, as templates and stabilizers to fabricate Fe3O4 nanoparticles through coprecipitation reaction. The obtained Fe3O4-PAA, Fe3O4-PAH, and Fe3O4-PVA nanoparticles showed T1 contrast performance with r1 relaxivities of 23.4, 60.3, and 30.6 mM s−1 at 0.5 T (25 °C), and a r2/r1 ratio of 2.62, 3.82, and 7.26, respectively. The cell viability assay revealed that Fe3O4-PAA and Fe3O4-PVA exhibited good biocompatibility, while Fe3O4-PAH displayed high cytotoxicity. In vivo T1-weighted (1 T) mice showed that both Fe3O4-PAA and Fe3O4-PVA were able to display remarkably brighten the contrast enhancement for the mice tumor and kidney sites, but Fe3O4-PAA had better contrast performance. This work highlights that the macromolecule ligands play an important role in the biocompatibility and T1 contrast performance of magnetic Fe3O4 nanoparticles.