Nanomaterials (May 2019)

Macromolecules with Different Charges, Lengths, and Coordination Groups for the Coprecipitation Synthesis of Magnetic Iron Oxide Nanoparticles as <i>T</i><sub>1</sub> MRI Contrast Agents

  • Cheng Tao,
  • Yanan Chen,
  • Danli Wang,
  • Yu Cai,
  • Qiang Zheng,
  • Lu An,
  • Jiaomin Lin,
  • Qiwei Tian,
  • Shiping Yang

DOI
https://doi.org/10.3390/nano9050699
Journal volume & issue
Vol. 9, no. 5
p. 699

Abstract

Read online

Considerable efforts have been focused on the exploitation of macromolecule ligands for synthesis of magnetic Fe3O4 nanoparticles as T1 magnetic resonance imaging (MRI) contrast agents, but studies that concern macromolecule ligands with different charges and coordination groups are still limited. Herein, we used poly(acrylic acid) (PAA), poly(allylamine hydrochloride) (PAH), and polyvinyl alcohol (PVA), which possess negative, positive and neutral charges with carboxylic acid, amino and hydroxyl groups respectively, as templates and stabilizers to fabricate Fe3O4 nanoparticles through coprecipitation reaction. The obtained Fe3O4-PAA, Fe3O4-PAH, and Fe3O4-PVA nanoparticles showed T1 contrast performance with r1 relaxivities of 23.4, 60.3, and 30.6 mM s−1 at 0.5 T (25 °C), and a r2/r1 ratio of 2.62, 3.82, and 7.26, respectively. The cell viability assay revealed that Fe3O4-PAA and Fe3O4-PVA exhibited good biocompatibility, while Fe3O4-PAH displayed high cytotoxicity. In vivo T1-weighted (1 T) mice showed that both Fe3O4-PAA and Fe3O4-PVA were able to display remarkably brighten the contrast enhancement for the mice tumor and kidney sites, but Fe3O4-PAA had better contrast performance. This work highlights that the macromolecule ligands play an important role in the biocompatibility and T1 contrast performance of magnetic Fe3O4 nanoparticles.

Keywords