Point Mutations in the Glycoprotein Ectodomain of Field Rabies Viruses Mediate Cell Culture Adaptation through Improved Virus Release in a Host Cell Dependent and Independent Manner
Sabine Nitschel,
Luca M. Zaeck,
Madlin Potratz,
Tobias Nolden,
Verena te Kamp,
Kati Franzke,
Dirk Höper,
Florian Pfaff,
Stefan Finke
Affiliations
Sabine Nitschel
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany
Luca M. Zaeck
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany
Madlin Potratz
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany
Tobias Nolden
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany
Verena te Kamp
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany
Kati Franzke
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectiology (IMED), 17493 Greifswald-Insel Riems, Germany
Dirk Höper
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Diagnostic Virology (IVD), 17493 Greifswald-Insel Riems, Germany
Florian Pfaff
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Diagnostic Virology (IVD), 17493 Greifswald-Insel Riems, Germany
Stefan Finke
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany
Molecular details of field rabies virus (RABV) adaptation to cell culture replication are insufficiently understood. A better understanding of adaptation may not only reveal requirements for efficient RABV replication in cell lines, but may also provide novel insights into RABV biology and adaptation-related loss of virulence and pathogenicity. Using two recombinant field rabies virus clones (rRABV Dog and rRABV Fox), we performed virus passages in three different cell lines to identify cell culture adaptive mutations. Ten passages were sufficient for the acquisition of adaptive mutations in the glycoprotein G and in the C-terminus of phosphoprotein P. Apart from the insertion of a glycosylation sequon via the mutation D247N in either virus, both acquired additional and cell line-specific mutations after passages on BHK (K425N) and MDCK-II (R346S or R350G) cells. As determined by virus replication kinetics, complementation, and immunofluorescence analysis, the major bottleneck in cell culture replication was the intracellular accumulation of field virus G protein, which was overcome after the acquisition of the adaptive mutations. Our data indicate that limited release of extracellular infectious virus at the plasma membrane is a defined characteristic of highly virulent field rabies viruses and we hypothesize that the observed suboptimal release of infectious virions is due to the inverse correlation of virus release and virulence in vivo.