Overview of Addressed Fiber Bragg Structures’ Development
Timur Agliullin,
German Il’In,
Artem Kuznetsov,
Rinat Misbakhov,
Rustam Misbakhov,
Gennady Morozov,
Oleg Morozov,
Ilnur Nureev,
Airat Sakhabutdinov
Affiliations
Timur Agliullin
Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia
German Il’In
Department of Electronic and Quantum Means of Information Communication, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia
Artem Kuznetsov
Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia
Rinat Misbakhov
Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia
Rustam Misbakhov
Almetyevsk Branch, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 9b Stroiteli Avenue, Almetyevsk 423400, Russia
Gennady Morozov
Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia
Oleg Morozov
Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia
Ilnur Nureev
Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia
Airat Sakhabutdinov
Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10 K. Marx St., Kazan 420111, Russia
An addressed fiber Bragg structure (AFBS) is a special type of fiber Bragg grating simultaneously performing the functions of a two-frequency radiation shaper and a sensitive element. An AFBS forms a two-frequency optical spectral response at its output, the difference frequency of which is invariant to measured physical fields and is referred to as the address frequency of the AFBS. Each of the AFBSs in the system has its own address frequency; therefore, a number of such structures can be interrogated simultaneously enabling the addressed multiplexing. In this article, we provide an overview of the theory and technology of AFBS, including the structures with three or more spectral components with various combinations of difference frequencies, both symmetrical and asymmetric. The subjects of interrogation of AFBSs, their fabrication and calibration are discussed as well. We also consider a wide range of applications in which AFBS can be used, covering such areas as oil and gas production, power engineering, transport, medicine, etc. In addition, the prospects for the further development of AFBS are proposed that mitigate the shortcomings of the current AFBSs’ state of the art and open up new possibilities of their application.