PLoS ONE (Jan 2023)

Predicting the spatio-temporal distribution of the invasive alien plant Andropogon virginicus, in the South Korean peninsula considering long-distance dispersal capacities.

  • Jeong-Soo Park,
  • Hyohyemi Lee

DOI
https://doi.org/10.1371/journal.pone.0291365
Journal volume & issue
Vol. 18, no. 11
p. e0291365

Abstract

Read online

The spread of invasive alien species is a major threat to biodiversity. Estimating the long-distance dispersal capacity of invasive alien plants is vital for understanding their population dynamics and community composition. We predicted the spatial-temporal distribution of the alien plant Andropogon virginicus, in the Korean peninsula under climate change scenario using Random Forest (RF) and Cellular Automaton (CA) methods. Land use, barriers to dispersal, long-distance dispersal frequency, and maximum long-distance dispersal range were considered in our analysis. Our results showed that, among the five selected environmental variables, annual mean temperature and Human Foot-Printing (HFP) were positively associated with the occurrence probability of A. virginicus. This suggests that A. virginicus is likely to spread to the disturbed northern part of the Korean Peninsula due to climate change and habitat preference. When comparing modeling results for dispersal to field survey data, the modeling raster sets drawn from the long-distance dispersal frequency of 0.05 and maximum long-distance dispersal distance of 30 km y-1 had the most similar spatial expansion among the six long-distance dispersal parameter sets. The dispersal directions were associated with the landscape. Specifically, seeds dispersed by wind (anemochorous seeds) could propagate into open landscapes more easily than in forests. Regarding A. virginicus management, this grass can quickly invade bare ground with their wind-dispersed seeds, therefore habitat destruction, such as excessive logging and weeding, should be restrained.