BioResources (Feb 2007)

Precipitated calcium carbonate (PCC) - cellulose composite fillers: Effects of PCC particle structure on the production and properties of uncoated fine paper

  • Paulapuro, H.,
  • Fordsmand, H.,
  • Subramanian, R.

Journal volume & issue
Vol. 2, no. 1
pp. 91 – 105

Abstract

Read online

This work examines the precipitation of PCC – pulp composite fillers with varying crystal habits and their effects on the papermaking properties of printing and writing paper. Colloidal (c-PCC), rhombohedral (r-PCC), and scalenohedral types (s-PCC) of composite PCCs were produced and compared with commercial reference PCCs. Scanning electron micros-copy showed the c-PCC to be a high-surface-area nano-structured PCC. The rhombohedral composite was formed in clusters like a spider-web structure. Under similar experimental conditions, composite PCC was formed as individual ellipsoidal crystals and some of the particles had malformed structure, in contrast to the structured reference s-PCC. The co-precipitation and the structure of PCC significantly influence the forming, consolidation, and properties of paper, as well as its perform-ance in printing.Composite c-PCC showed the highest retention during forming. At higher filler contents, dewatering was reduced significantly with handsheets containing s- and r-PCC composite fillers. Colloidal composite hand-sheets showed the lowest tensile index and internal bond strength, while the rhombohedral composite gave the highest z-directional bond strength. Compared with the traditional reference samples containing commercial PCCs, paper with s- and r-composites had significantly higher density but similar light scattering ability. Addition of fibrillar fines to fine paper increased print rub fastness significantly in both laser and inkjet printed samples.

Keywords