Cell Reports (Dec 2015)

Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale

  • Guang-Zhong Wang,
  • Stephanie L. Hickey,
  • Lei Shi,
  • Hung-Chung Huang,
  • Prachi Nakashe,
  • Nobuya Koike,
  • Benjamin P. Tu,
  • Joseph S. Takahashi,
  • Genevieve Konopka

DOI
https://doi.org/10.1016/j.celrep.2015.10.043
Journal volume & issue
Vol. 13, no. 9
pp. 1868 – 1880

Abstract

Read online

Genes expressing circadian RNA rhythms are enriched for metabolic pathways, but the adaptive significance of cyclic gene expression remains unclear. We estimated the genome-wide synthetic and degradative cost of transcription and translation in three organisms and found that the cost of cycling genes is strikingly higher compared to non-cycling genes. Cycling genes are expressed at high levels and constitute the most costly proteins to synthesize in the genome. We demonstrate that metabolic cycling is accelerated in yeast grown under higher nutrient flux and the number of cycling genes increases ∼40%, which are achieved by increasing the amplitude and not the mean level of gene expression. These results suggest that rhythmic gene expression optimizes the metabolic cost of global gene expression and that highly expressed genes have been selected to be downregulated in a cyclic manner for energy conservation.