Frontiers in Physics (Nov 2020)
Are Further Cross Section Measurements Necessary for Space Radiation Protection or Ion Therapy Applications? Helium Projectiles
- John W. Norbury,
- Giuseppe Battistoni,
- Judith Besuglow,
- Judith Besuglow,
- Luca Bocchini,
- Daria Boscolo,
- Alexander Botvina,
- Martha Clowdsley,
- Wouter de Wet,
- Marco Durante,
- Marco Durante,
- Martina Giraudo,
- Thomas Haberer,
- Lawrence Heilbronn,
- Felix Horst,
- Michael Krämer,
- Chiara La Tessa,
- Chiara La Tessa,
- Francesca Luoni,
- Francesca Luoni,
- Andrea Mairani,
- Silvia Muraro,
- Ryan B. Norman,
- Vincenzo Patera,
- Giovanni Santin,
- Giovanni Santin,
- Christoph Schuy,
- Lembit Sihver,
- Lembit Sihver,
- Tony C. Slaba,
- Nikolai Sobolevsky,
- Albana Topi,
- Uli Weber,
- Charles M. Werneth,
- Cary Zeitlin
Affiliations
- John W. Norbury
- NASA Langley Research Center, Hampton, VA, United States
- Giuseppe Battistoni
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, Milan, Italy
- Judith Besuglow
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Judith Besuglow
- University of Heidelberg, Heidelberg, Germany
- Luca Bocchini
- Thales Alenia Space, Torino, Italy
- Daria Boscolo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Alexander Botvina
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Martha Clowdsley
- NASA Langley Research Center, Hampton, VA, United States
- Wouter de Wet
- University of New Hampshire, Durham, NH, United States
- Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Marco Durante
- Technische Universität Darmstadt, Darmstadt, Germany
- Martina Giraudo
- Thales Alenia Space, Torino, Italy
- Thomas Haberer
- 0Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
- Lawrence Heilbronn
- 1University of Tennessee, Knoxville, TN, United States
- Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Michael Krämer
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Chiara La Tessa
- 2University of Trento, Trento, Italy
- Chiara La Tessa
- 3Trento Institute for Fundamental Physics and Applications (INFN‐TIFPA), Trento, Italy
- Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Francesca Luoni
- Technische Universität Darmstadt, Darmstadt, Germany
- Andrea Mairani
- 0Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
- Silvia Muraro
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, Milan, Italy
- Ryan B. Norman
- NASA Langley Research Center, Hampton, VA, United States
- Vincenzo Patera
- 4Universita’ di Roma “Sapienza”, Roma, Italy
- Giovanni Santin
- 5European Space Agency, Noordwijk, Netherlands
- Giovanni Santin
- 6RHEA System, Noordwijk, Netherlands
- Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Lembit Sihver
- 7Technische Universität Wien, Atominstitut, Vienna, Austria
- Lembit Sihver
- 8Chalmers University of Technology, Gothenburg, Sweden
- Tony C. Slaba
- NASA Langley Research Center, Hampton, VA, United States
- Nikolai Sobolevsky
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- Albana Topi
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Charles M. Werneth
- NASA Langley Research Center, Hampton, VA, United States
- Cary Zeitlin
- 9Leidos Innovations Corporation, Houston, TX, United States
- DOI
- https://doi.org/10.3389/fphy.2020.565954
- Journal volume & issue
-
Vol. 8
Abstract
The helium (4He) component of the primary particles in the galactic cosmic ray spectrum makes significant contributions to the total astronaut radiation exposure. 4He ions are also desirable for direct applications in ion therapy. They contribute smaller projectile fragmentation than carbon (12C) ions and smaller lateral beam spreading than protons. Space radiation protection and ion therapy applications need reliable nuclear reaction models and transport codes for energetic particles in matter. Neutrons and light ions (1H, 2H, 3H, 3He, and 4He) are the most important secondary particles produced in space radiation and ion therapy nuclear reactions; these particles penetrate deeply and make large contributions to dose equivalent. Since neutrons and light ions may scatter at large angles, double differential cross sections are required by transport codes that propagate radiation fields through radiation shielding and human tissue. This work will review the importance of 4He projectiles to space radiation and ion therapy, and outline the present status of neutron and light ion production cross section measurements and modeling, with recommendations for future needs.
Keywords
- helium projectile cross section measurements
- space radiation cross sections
- ion therapy cross sections
- helium projectile ion therapy
- helium projectile space radiation