Advances in Mechanical Engineering (Jan 2013)
Modelling, Simulations, and Optimisation of Electric Vehicles for Analysis of Transmission Ratio Selection
Abstract
Pure electric vehicles (PEVs) provide a unique problem in powertrain design through the meeting of performance specifications whilst maximising driving range. The consideration of single speed and multispeed transmissions for electric vehicles provides two strategies for achieving desired range and performance specifications. Through the implementation of system level vehicle models, design analysis, and optimisation, this paper analyses the application of both single speed and two-speed transmission applications to electric vehicles. Initially, transmission ratios are designed based on grade and top speed requirements, and impact on vehicle traction curve is evaluated. Then performance studies are conducted for different transmission ratios using both single speed and two-speed powertrain configurations to provide a comparative assessment of the vehicles. Finally, multivariable optimisation in the form of genetic algorithms is employed to determine an optimal gear ratio selection for single speed and two-speed PEVs. Results demonstrate that the two-speed transmission is capable of achieving better results for performance requirements over a single speed transmission, including vehicle acceleration and grade climbing. However, the lower powertrain efficiency reduces the simulated range results.