Vaccines (Aug 2023)

Aerosol Inhalation of Chimpanzee Adenovirus Vectors (ChAd68) Expressing Ancestral or Omicron BA.1 Stabilized Pre–Fusion Spike Glycoproteins Protects Non–Human Primates against SARS-CoV-2 Infection

  • Shen Wang,
  • Mian Qin,
  • Long Xu,
  • Ting Mu,
  • Ping Zhao,
  • Bing Sun,
  • Yue Wu,
  • Lingli Song,
  • Han Wu,
  • Weicheng Wang,
  • Xingwen Liu,
  • Yanyan Li,
  • Fengmei Yang,
  • Ke Xu,
  • Zhanlong He,
  • Michel Klein,
  • Ke Wu

DOI
https://doi.org/10.3390/vaccines11091427
Journal volume & issue
Vol. 11, no. 9
p. 1427

Abstract

Read online

Current COVID-19 vaccines are effective countermeasures to control the SARS-CoV-2 virus pandemic by inducing systemic immune responses through intramuscular injection. However, respiratory mucosal immunization will be needed to elicit local sterilizing immunity to prevent virus replication in the nasopharynx, shedding, and transmission. In this study, we first compared the immunoprotective ability of a chimpanzee replication–deficient adenovirus–vectored COVID-19 vaccine expressing a stabilized pre–fusion spike glycoprotein from the ancestral SARS-CoV-2 strain Wuhan–Hu–1 (BV-AdCoV-1) administered through either aerosol inhalation, intranasal spray, or intramuscular injection in cynomolgus monkeys and rhesus macaques. Compared with intranasal administration, aerosol inhalation of BV-AdCoV-1 elicited stronger humoral and mucosal immunity that conferred excellent protection against SARS-CoV-2 infection in rhesus macaques. Importantly, aerosol inhalation induced immunity comparable to that obtained by intramuscular injection, although at a significantly lower dose. Furthermore, to address the problem of immune escape variants, we evaluated the merits of heterologous boosting with an adenovirus–based Omicron BA.1 vaccine (C68–COA04). Boosting rhesus macaques vaccinated with two doses of BV-AdCoV-1 with either the homologous or the heterologous C68–COA04 vector resulted in cross–neutralizing immunity against WT, Delta, and Omicron subvariants, including BA.4/5 stronger than that obtained by administering a bivalent BV-AdCoV-1/C68–COA04 vaccine. These results demonstrate that the administration of BV-AdCoV-1 or C68–COA04 via aerosol inhalation is a promising approach to prevent SARS-CoV-2 infection and transmission and curtail the pandemic spread.

Keywords