Viruses (Jan 2022)

Modeling the Transmission of the SARS-CoV-2 Delta Variant in a Partially Vaccinated Population

  • Ugo Avila-Ponce de León,
  • Eric Avila-Vales,
  • Kuan-lin Huang

DOI
https://doi.org/10.3390/v14010158
Journal volume & issue
Vol. 14, no. 1
p. 158

Abstract

Read online

In a population with ongoing vaccination, the trajectory of a pandemic is determined by how the virus spreads in unvaccinated and vaccinated individuals that exhibit distinct transmission dynamics based on different levels of natural and vaccine-induced immunity. We developed a mathematical model that considers both subpopulations and immunity parameters, including vaccination rates, vaccine effectiveness, and a gradual loss of protection. The model forecasted the spread of the SARS-CoV-2 delta variant in the US under varied transmission and vaccination rates. We further obtained the control reproduction number and conducted sensitivity analyses to determine how each parameter may affect virus transmission. Although our model has several limitations, the number of infected individuals was shown to be a magnitude greater (~10×) in the unvaccinated subpopulation compared to the vaccinated subpopulation. Our results show that a combination of strengthening vaccine-induced immunity and preventative behavioral measures like face mask-wearing and contact tracing will likely be required to deaccelerate the spread of infectious SARS-CoV-2 variants.

Keywords