Neoplasia: An International Journal for Oncology Research (Feb 2005)
Genetic and Epigenetic Changes of Components Affecting the WNT Pathway in Colorectal Carcinomas Stratified by Microsatellite Instability
Abstract
An unselected series of 310 colorectal carcinomas, stratified according to microsatellite instability (MSI) and DNA ploidy, was examined for mutations and/or promoter hypermethylation of five components of the WNT signaling cascade [APC, CTNNB1 (encoding Rcatenin), AXIN2, TCF4, and WISP3] and three genes indirectly affecting this pathway [CDH1 (encoding β-cadherin), PTEN, and TP53]. APC and TP53 mutations were each present more often in microsatellite-stable (MSS) tumors than in those with MSI (P < .001 for both). We confirmed that the aneuploid MSS tumors frequently contained TP53 mutations (P < .001), whereas tumors with APC mutations and/or promoter hypermethylation revealed no associations to ploidy. Mutations in APC upstream of codons 1020 to 1169, encoding the β-catenin binding site, were found in 15/144 mutated tumors and these patients seemed to have poor clinical outcome (P = .096). Frameshift mutations in AXIN2, PTEN, TCF4, and WISP3 were found in 20%, 17%, 46%, and 28% of the MSI tumors, respectively. More than half of the tumors with heterozygote mutations in AXIN2 were concurrently mutated in APC. The present study showed that more than 90% of all samples had alteration in one or more of the genes investigated, adding further evidence to the vital importance of activated WNT signaling in colorectal carcinogenesis.
Keywords