PLoS ONE (Jan 2018)
A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition.
Abstract
The surface electromyography (sEMG)-based gesture recognition with deep learning approach plays an increasingly important role in human-computer interaction. Existing deep learning architectures are mainly based on Convolutional Neural Network (CNN) architecture which captures spatial information of electromyogram signal. Motivated by the sequential nature of electromyogram signal, we propose an attention-based hybrid CNN and RNN (CNN-RNN) architecture to better capture temporal properties of electromyogram signal for gesture recognition problem. Moreover, we present a new sEMG image representation method based on a traditional feature vector which enables deep learning architectures to extract implicit correlations between different channels for sparse multi-channel electromyogram signal. Extensive experiments on five sEMG benchmark databases show that the proposed method outperforms all reported state-of-the-art methods on both sparse multi-channel and high-density sEMG databases. To compare with the existing works, we set the window length to 200ms for NinaProDB1 and NinaProDB2, and 150ms for BioPatRec sub-database, CapgMyo sub-database, and csl-hdemg databases. The recognition accuracies of the aforementioned benchmark databases are 87.0%, 82.2%, 94.1%, 99.7% and 94.5%, which are 9.2%, 3.5%, 1.2%, 0.2% and 5.2% higher than the state-of-the-art performance, respectively.