BMC Research Notes (Jan 2018)

Modulation of mitochondrial activity in HaCaT keratinocytes by the cell penetrating peptide Z-Gly-RGD(DPhe)-mitoparan

  • Adam Richardson,
  • Lewis Muir,
  • Sasha Mousdell,
  • Darren Sexton,
  • Sarah Jones,
  • John Howl,
  • Kehinde Ross

DOI
https://doi.org/10.1186/s13104-018-3192-1
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 4

Abstract

Read online

Abstract Objective Biologically active cell penetrating peptides (CPPs) are an emerging class of therapeutic agent. The wasp venom peptide mastoparan is an established CPP that modulates mitochondrial activity and triggers caspase-dependent apoptosis in cancer cells, as does the mastoparan analogue mitoparan (mitP). Mitochondrial depolarisation and activation of the caspase cascade also underpins the action of dithranol, a topical agent for treatment of psoriasis. The effects of a potent mitP analogue on mitochondrial activity were therefore examined to assess its potential as a novel approach for targeting mitochondria for the treatment of psoriasis. Results In HaCaT keratinocytes treated with the mitP analogue Z-Gly-RGD(DPhe)-mitP for 24 h, a dose-dependent loss of mitochondrial activity was observed using the methyl-thiazolyl-tetrazolium (MTT) assay. At 10 μmol L−1, MTT activity was less than 30% that observed in untreated cells. Staining with the cationic dye JC-1 suggested that Z-Gly-RGD(DPhe)-mitP also dissipated the mitochondrial membrane potential, with a threefold increase in mitochondrial depolarisation levels. However, caspase activity appeared to be reduced by 24 h exposure to Z-Gly-RGD(DPhe)-mitP treatment. Furthermore, Z-Gly-RGD(DPhe)-mitP treatment had little effect on overall cell viability. Our findings suggest Z-Gly-RGD(DPhe)-mitP promotes the loss of mitochondrial activity but does not appear to evoke apoptosis in HaCaT keratinocytes.

Keywords