Stem Cell Research & Therapy (Jun 2018)

Conditioned medium from bone marrow-derived mesenchymal stem cells inhibits vascular calcification through blockade of the BMP2–Smad1/5/8 signaling pathway

  • Shuangshuang Wang,
  • Siwang Hu,
  • Jian Wang,
  • Yahui Liu,
  • Ruochi Zhao,
  • Maoqing Tong,
  • Hanbin Cui,
  • Nan Wu,
  • Xiaomin Chen

DOI
https://doi.org/10.1186/s13287-018-0894-1
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Arterial calcification is associated with cardiovascular disease as a complication of advanced atherosclerosis and is a significant contributor to cardiovascular morbidity and mortality. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important role in arterial calcification and is characterized by cellular necrosis, inflammation, and lipoprotein and phospholipid complexes, especially in atherosclerotic calcification. The conditioned medium from bone marrow-derived mesenchymal stem cells (MSC-CM) is well known as a rich source of autologous cytokines and is universally used for tissue regeneration in current clinical medicine. Here, we demonstrate that MSC-CM inhibits beta-glycerophosphate (β-GP)-induced vascular calcification through blockade of the bone morphogenetic protein-2 (BMP2)–Smad1/5/8 signaling pathway. Methods VSMC calcification was induced by β-GP followed by treatment with MSC-CM. Mineral deposition was assessed by Alizarin Red S staining. Intracellular calcium content was determined colorimetrically by the o-cresolphthalein complexone method and alkaline phosphatase (ALP) activity was measured by the para-nitrophenyl phosphate method. Expression of BMP2, BMPR1A, BMPR1B, BMPR2, msh homeobox 2 (Msx2), Runt-related transcription factor 2 (Runx2), and osteocalcin (OC), representative osteoblastic markers, was assessed using real-time polymerase chain reaction analysis while the protein expression of BMP2, Runx2, and phosphorylated Smad1/5/8 was detected by western blot analysis. Results Our data demonstrated that MSC-CM inhibits osteoblastic differentiation and mineralization of VSMCs as evidenced by decreased calcium content, ALP activity, and decreased expression of BMP-2, Runx2, Msx2, and OC. MSC-CM suppressed the expression of phosphorylated Smad1/5/8 and the β-GP-induced translocation from the cytoplasm to the nucleus. Further study demonstrated that human recombinant BMP-2 overcame the suppression of VSMC calcification by MSC-CM. Conclusion MSC-CM may act as a novel therapy for VSMC calcification by mediating the BMP2–Smad1/5/8 signaling pathway

Keywords