Open Engineering (Jul 2023)

Punching shear of reinforced concrete slabs bonded with reactive powder after exposure to fire

  • Atea Rafid Saeed,
  • Dheyab Hasanain M.,
  • Aljazaari Rasha A.

DOI
https://doi.org/10.1515/eng-2022-0393
Journal volume & issue
Vol. 13, no. 1
pp. p. 507–18 – 21

Abstract

Read online

Reactive powder concrete (RPC) is one of the most recent and significant advancements in the world of building. Due to its higher concrete characteristics, it has a common excessive benevolence happening in the globe at the moment, excessive ductility, shrinkage resistance, and corrosion and abrasion resistance. Investigated is the method for amending the RPC experimentally in punching shear slab action and the properties of construction material to investigate properties of volumetric ratios of steel fiber, and silicas fume, tensile steel ratio, the most important component for construction is reinforced concrete, which works well with other materials to create structures in any shape that is needed. In the present research, investigational work of RC slab with (1,000 × 1,000 × 60) mm dimensions was tested. This study aims to see how the relative volume of steel fibers (Vf) and silica fume content (Sf) affect the actions of RC slabs after being exposed to fire. It originated that a concrete mix containing 2% steel fibers improved the RPC slab's cracking and final punching shear. The existence of reactive powder increases fire resistance. This study's experiment aimed to see how reactive powder and Slab's ultimate punching shear strength were affected by replacement ratio. Whenever a fire is present. After fire exposure, the initial and subsequent stiffness of reinforced concrete slabs reduced considerably the temperature grew from 25 to 750°C.

Keywords