Journal of Hydrology and Hydromechanics (Mar 2024)

Testing sensitivity of BILAN and GR2M models to climate conditions in the Gambia River Basin

  • Ba Doudou,
  • Langhammer Jakub,
  • Maca Petr,
  • Bodian Ansoumana

DOI
https://doi.org/10.2478/johh-2023-0044
Journal volume & issue
Vol. 72, no. 1
pp. 131 – 147

Abstract

Read online

This study investigates the performance of two lumped hydrological models, BILAN and GR2M, in simulating runoff across six catchments in the Gambia River Basin (Senegal) over a 30-year period employing a 7-year sliding window under different climatic conditions. The results revealed differences in overall performance and variable sensitivity of the models to hydrological conditions and calibration period lengths, stemming from their different structure and complexity. In particular, the BILAN model, which is based on a more complex set of parameters, showed better overall results in simulating dry conditions, while the GR2M model had superior performance in wet conditions. The study emphasized the importance of the length of the calibration period on model performance and on the reduction of uncertainty in the results. Extended calibration periods for both models narrowed the range of the Kling-Gupta Efficiency (KGE) values and reduced the loss of performance during the parameter transfer from calibration to validation. For the BILAN model, a longer calibration period also significantly reduced the variability of performance metric values. Conversely, for the GR2M model, the variability rate did not decrease with the length of the calibration periods. Testing both models under variable conditions underscored the crucial role of comprehending model structure, hydrological sensitivity, and calibration strategy effects on simulation accuracy and uncertainty for reliable results.

Keywords