BMC Health Services Research (Mar 2018)
On designing of a low leakage patient-centric provider network
Abstract
Abstract Background When a patient in a provider network seeks services outside of their community, the community experiences a leakage. Leakage is undesirable as it typically leads to higher out-of-network cost for patient and increases barrier for care coordination, which is particularly problematic for Accountable Care Organization (ACO) as the in-network providers are financially responsible for quality of care and outcome. We aim to design a data-driven method to identify naturally occurring provider networks driven by diabetic patient choices, and understand the relationship among provider composition, patient composition, and service leakage pattern. By doing so, we learn the features of low service leakage provider networks that can be generalized to different patient population. Methods Data used for this study include de-identified healthcare insurance administrative data acquired from Capital District Physicians’ Health Plan (CDPHP) for diabetic patients who resided in four New York state counties (Albany, Rensselaer, Saratoga, and Schenectady) in 2014. We construct a healthcare provider network based on patients’ historical medical insurance claims. A community detection algorithm is used to identify naturally occurring communities of collaborating providers. For each detected community, a profile is built using several new key measures to elucidate stakeholders of our findings. Finally, import-export analysis is conducted to benchmark their leakage pattern and identify further leakage reduction opportunity. Results The design yields six major provider communities with diverse profiles. Some communities are geographically concentrated, while others tend to draw patients with certain diabetic co-morbidities. Providers from the same healthcare institution are likely to be assigned to the same community. While most communities have high within-community utilization and spending, at 85% and 86% respectively, leakage still persists. Hence, we utilize a metric from import-export analysis to detect leakage, gaining insight on how to minimize leakage. Conclusions We identify patient-driven provider organization by surfacing providers who share a large number of patients. By analyzing the import-export behavior of each identified community using a novel approach and profiling community patient and provider composition we understand the key features of having a balanced number of PCP and specialists and provider heterogeneity.
Keywords