Physics Letters B (Nov 2022)
E2 rotational invariants of 01+ and 21+ states for 106Cd: The emergence of collective rotation
- T.J. Gray,
- J.M. Allmond,
- R.V.F. Janssens,
- W. Korten,
- A.E. Stuchbery,
- J.L. Wood,
- A.D. Ayangeakaa,
- S. Bottoni,
- B.M. Bucher,
- C.M. Campbell,
- M.P. Carpenter,
- H.L. Crawford,
- H. David,
- D.T. Doherty,
- P. Fallon,
- M.T. Febbraro,
- A. Galindo-Uribarri,
- C.J. Gross,
- M. Komorowska,
- F.G. Kondev,
- T. Lauritsen,
- A.O. Macchiavelli,
- P. Napiorkowsi,
- E. Padilla-Rodal,
- S.D. Pain,
- W. Reviol,
- D.G. Sarantites,
- G. Savard,
- D. Seweryniak,
- C.Y. Wu,
- C.-H. Yu,
- S. Zhu
Affiliations
- T.J. Gray
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA; Corresponding author.
- J.M. Allmond
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- R.V.F. Janssens
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA; Triangle Universities Nuclear Laboratory, Duke University, Durham, 27708, NC, USA
- W. Korten
- IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
- A.E. Stuchbery
- Department of Nuclear Physics and Accelerator Applications, Research School of Physics, Australian National University, Canberra, 2601, ACT, Australia
- J.L. Wood
- School of Physics, Gerogia Institute of Technology, Atlanta, 30332-0430, GA, USA
- A.D. Ayangeakaa
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA; Triangle Universities Nuclear Laboratory, Duke University, Durham, 27708, NC, USA
- S. Bottoni
- Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA; INFN Sezione di Milano, Milano, 20133, Italy
- B.M. Bucher
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA; Nuclear Nonproliferation Division, Idaho National Laboratory, Idaho Falls, 83415, ID, USA
- C.M. Campbell
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
- M.P. Carpenter
- Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA
- H.L. Crawford
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
- H. David
- Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA
- D.T. Doherty
- IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France; Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
- P. Fallon
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA
- M.T. Febbraro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- A. Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- C.J. Gross
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- M. Komorowska
- Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
- F.G. Kondev
- Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA
- T. Lauritsen
- Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA
- A.O. Macchiavelli
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA; Physics Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- P. Napiorkowsi
- Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
- E. Padilla-Rodal
- Instituto de Cienias Nucleares, UNAM, AP 70-543, 04510 México, D.F., Mexico
- S.D. Pain
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- W. Reviol
- Department of Physics, Washington University, St. Louis, 63130, MO, USA; Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA
- D.G. Sarantites
- Department of Physics, Washington University, St. Louis, 63130, MO, USA
- G. Savard
- Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA
- D. Seweryniak
- Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA
- C.Y. Wu
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
- C.-H. Yu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- S. Zhu
- Physics Division, Argonne National Laboratory, Chicago, 60439, IL, USA; Physics Department, Brookhaven National Laboratory, Upton, 11973, NY, USA
- Journal volume & issue
-
Vol. 834
p. 137446
Abstract
The collective structure of 106Cd is elucidated by multi-step Coulomb excitation of a 3.849 MeV/A beam of 106Cd on a 1.1 mg/cm2 208Pb target using GRETINA-CHICO2 at ATLAS. Fourteen E2 matrix elements were obtained. The nucleus 106Cd is a prime example of emergent collectivity that possesses a simple structure: it is free of complexity caused by shape coexistence and has a small, but collectively active number of valence nucleons. This work follows in a long and currently active quest to answer the fundamental question of the origin of nuclear collectivity and deformation, notably in the cadmium isotopes. The results are discussed in terms of phenomenological models, the shell model, and Kumar-Cline sums of E2 matrix elements. The 〈02+||E2||21+〉 matrix element is determined for the first time, providing a total, converged measure of the electric quadrupole strength, 〈Q2〉, of the first-excited 21+ level relative to the 01+ ground state, which does not show an increase as expected of harmonic and anharmonic vibrations. Strong evidence for triaxial shapes in weakly collective nuclei is indicated; collective vibrations are excluded. This is contrary to the only other cadmium result of this kind in 114Cd by C. Fahlander et al. (1988) [38], which is complicated by low-lying shape coexistence near midshell.