Animal Nutrition (Dec 2024)
Evaluation of glycyrrhetinic acid in attenuating adverse effects of a high-fat diet in largemouth bass (Micropterus salmoides)
Abstract
Glycyrrhetinic acid (GA) has been shown to promote growth characteristics and play a crucial role in anti-inflammatory responses in animals. To investigate the effects of dietary GA supplementation on growth performance, intestinal inflammation, and intestinal barrier protection in largemouth bass (Micropterus salmoides) fed a high-fat diet (HFD), a 77-day feeding experiment was conducted. A total of 750 largemouth bass, initially averaging 17.39 ± 0.09 g in body weight, were randomly allocated to five experimental groups and fed a control diet, a HFD, and the HFD diet supplemented with GA at either 0.5, 1.0, or 1.5 mg/kg, named as control, HDF, HFD + GA 0.5, HFD + GA 1.0, and 1.5 HFD + GA 1.5, respectively. Each group contained three replicates. The study revealed that dietary GA improved final body weight (P < 0.001), percent weight gain (P = 0.041), and feed intake (P < 0.001), all of which had been affected by a HFD in largemouth bass (P < 0.05). Supplementation of HFD with 1.0 mg/kg GA increased the mRNA expressions and protein levels of corresponding tight junctions, occludin, zonula occluden-1 (ZO-1) and claudin-1 in the intestines of largemouth bass. Furthermore, the addition of HFD with both of 0.5 and 1.0 mg/kg GA decreased the mRNA expressions of pro-inflammatory genes such as interleukin-1β (IL-1β), IL-18, and cysteinyl aspartate specific proteinase 1 (caspase-1), as well as proteins associated with pyroptosis-induced inflammation, including NOD-like receptor family and pyrin domain contain 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), gasdermin E (GSDME), and N-terminal domain of GSDME (GSDME-N) (P < 0.05). Finally, dietary GA supplementation alleviated mitochondrial damage and reduced reactive oxygen species (ROS) production induced by the HFD. It is concluded that GA supplementation in HFD enhances growth performance, increases mRNA expression and protein levels of tight junction-related parameters, decreases mRNA expression and protein levels of pyroptosis-related genes, and alleviates intestinal mitochondrial injury and inflammation induced by HFD.