Parasites & Vectors (Sep 2011)
Dissemination of <it>Metarhizium anisopliae </it>of low and high virulence by mating behavior in <it>Aedes aegypti</it>
Abstract
Abstract Background Dengue is a viral disease transmitted by Aedes mosquitoes. It is a threat for public health worldwide and its primary vector Aedes aegypti is becoming resistant to chemical insecticides. These factors have encouraged studies to evaluate entomopathogenic fungi against the vector. Here we evaluated mortality, infection, insemination and fecundity rates in A. aegypti females after infection by autodissemination with two Mexican strains of Metarhizium anisopliae. Methods Two M. anisopliae strains were tested: The Ma-CBG-1 least virulent (lv), and the Ma-CBG-2 highly virulent (hv) strain. The lv was tested as non mosquito-passed (NMP), and mosquito-passed (MP), while the hv was examined only as MP version, therefore including the control four treatments were used. In the first bioassay virulence of fungal strains towards female mosquitoes was determined by indirect exposure for 48 hours to conidia-impregnated paper. In the second bioassay autodissemination of fungal conidia from fungus-contaminated males to females was evaluated. Daily mortality allowed computation of survival curves and calculation of the LT50 by the Kaplan-Meier model. All combinations of fungal sporulation and mating insemination across the four treatments were analyzed by χ2. The mean fecundity was analyzed by ANOVA and means contrasted with the Ryan test. Results Indirect exposure to conidia allowed a faster rate of mortality, but exposure to a fungal-contaminated male was also an effective method of infecting female mosquitoes. All females confined with the hv strain-contaminated male died in fifteen days with a LT50 of 7.57 (± 0.45) where the control was 24.82 (± 0.92). For the lv strain, it was possible to increase fungal virulence by passing the strain through mosquitoes. 85% of females exposed to hv-contaminated males became infected and of them just 10% were inseminated; control insemination was 46%. The hv strain reduced fecundity by up to 99%, and the lv strain caused a 40% reduction in fecundity. Conclusions The hv isolate infringed a high mortality, allowed a low rate of insemination, and reduced fecundity to nearly zero in females confined with a fungus-contaminated male. This pathogenic impact exerted through sexual transmission makes the hv strain of M. anisopliae worthy of further research.
Keywords