IEEE Open Journal of Power Electronics (Jan 2022)

GaN Active Rectifier Diode

  • Michael Basler,
  • Richard Reiner,
  • Stefan Moench,
  • Patrick Waltereit,
  • Rudiger Quay

DOI
https://doi.org/10.1109/OJPEL.2022.3222865
Journal volume & issue
Vol. 3
pp. 876 – 885

Abstract

Read online

Active or synchronous rectification is used today to further increase the efficiency of mass-market power supplies by eliminating the turn-on voltage of rectifier diodes, thus reducing conduction losses. However, the active rectification is usually realized by two devices: a power MOSFET and a control circuit to imitate an ideal diode behavior. This paper presents a GaN active rectifier diode consisting of a 600 V power transistor, a control circuit with gate driver, and a supply generation, all monolithically realized in a GaN power integrated circuit (IC). This enables a true two-terminal device that can directly replace a rectifier diode. In order to evaluate the proposed conduction loss reduction by replacing a rectifier diode by an active diode, the theoretical limits at circuit level and at semiconductor level are analyzed. The GaN active rectifier diode is demonstrated in a half-wave rectification (110/230 VAC, 50/60 Hz) up to a forward current of 6 A. A single-device realization of low-loss GaN active rectifier diodes is more cost-efficient than a multi-chip or package-integrated solution.

Keywords