Journal of Materials Research and Technology (Sep 2022)

Facile synthesis of amorphous zirconium phosphate graphitic carbon nitride composite and its high performance for photocatalytic degradation of indigo carmine dye in water

  • Ayyob M. Bakry,
  • Waleed M. Alamier,
  • M. Samy El-Shall,
  • Fathi S. Awad

Journal volume & issue
Vol. 20
pp. 1456 – 1469

Abstract

Read online

In this work, we reported the synthesis of amorphous zirconium phosphate graphitic carbon nitride (a-ZrP/g-C3N4) composite via the formation of amorphous zirconium phosphate (a-ZrP) onto the surface of graphitic carbon nitride (g-C3N4) nanosheets. The prepared a-ZrP-g-C3N4 composite was characterized by different analytical techniques. The FTIR, XRD, TEM, SEM, XPS, and PET surface area confirmed the successful preparation of a-ZrP-g-C3N4 nanocomposite with a high surface area (60 m2/g) and pore width less than 2 nm. The a-ZrP-g-C3N4 nanocomposite showed superior photocatalytic efficiency for the degradation of indigo carmine (IC) dye compared to the (g-C3N4) nanosheets. At room temperature and normal pH, 5 mg of the photocatalyst can degrade about 100% of 50 mL of an aqueous solution containing 10 ppm IC dye within 30 min under UV light irradiation (4 W at 356 nm). The photodegradation kinetics fitted well with the first-order kinetic module. The high photodegradation efficiency was attributed to the unique structure of the prepared nanocomposite since a-ZrP crosslinks g-C3N4 nanosheets in mesoporous structure which generate multichannel photocatalytic sites in addition to the inhibition of photogenerated electrons (e–) and holes (h+) recombination. The results of reusability revealed that the nanocomposite can be used several times without a significant change in its photocatalytic activity. Owing to the ease of synthetic strategy, cost-effective starting materials, and high photodegradation efficiency, a-ZrP/g-C3N4 composite has the potential to be a promising photocatalyst to remediate water-containing indigo carmine dye.

Keywords