Catalysts (Dec 2021)

Synthesis and Characterization of Zinc Oxide Nanoparticles Using <i>Acacia caesia</i> Bark Extract and Its Photocatalytic and Antimicrobial Activities

  • Jayachandran Ashwini,
  • Thankamani Ravikumar Aswathy,
  • Anil Babu Rahul,
  • Gautham M. Thara,
  • Achuthsankar S. Nair

DOI
https://doi.org/10.3390/catal11121507
Journal volume & issue
Vol. 11, no. 12
p. 1507

Abstract

Read online

This paper presents the green synthesis and characterization of ZnO nanoparticles and their microbial and photocatalytic application. The green synthesis of ZnO nanoparticles was carried out using Zinc nitrate hexahydrate and the bark extract of Acacia caesia (L.) Willd. The nanoparticles were synthesized at an optimum temperature of 65 °C followed by calcination at 400 °C. The samples were characterized using UV-visible spectroscopy, SEM, XRD, FTIR and EDX analysis. UV-visible spectroscopy showed a characteristic peak at 338 nm and the bandgap energy was found to be 3 eV which is specific for ZnO. SEM confirmed the presence of ZnO on its nanoscale. EDX gave the elemental details of Zinc constituting to 37.77% and Oxygen comprising 20.77% of its atomic weight. XRD analysis gave the diffractogram indexed at various angles corresponding to ZnO nanoparticles. It also revealed the average crystalline size to be 32.32 nm and the shape was found to be hexagonal. The functional group present in the nanoparticles was characterized using FTIR, which gave a characteristic peak at 485 cm−1. The synthesized nanoparticles exhibited significant photocatalytic (methyl blue under UV irradiation). The presence of nanoparticles induces changes in its kinetics, whose rate constants and correlation coefficients were analyzed during the photocatalytic degradation of the model pollutant Methyl Blue. Studies on antibacterial (Escherichia coli, Staphylococcus aureus), antifungal (Aspergillus niger, Candida albicans) and anti-inflammatory (COX assay) properties were also carried out. The nanoparticles were synthesized in an eco-friendly and cost-effective method. The study opens new horizons in the field of water treatment, biosensors and nanotechnology.

Keywords