BMC Sports Science, Medicine and Rehabilitation (Sep 2023)

The effect of swimming on the body posture, range of motion and musculoskeletal pain in elite para and able-bodied swimmers

  • Anna Zwierzchowska,
  • Eliza Gawel,
  • Jakub Karpinski,
  • Adam Maszczyk,
  • Aleksandra Zebrowska

DOI
https://doi.org/10.1186/s13102-023-00734-z
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Elite swimmers may be predisposed to disturbances in the range of motion (ROM) of hip joints and spinal curvatures, which are a factor that induces body’s compensatory mechanisms that may have an impact on sports training, athletic performance and health. This study aimed to identify compensatory mechanisms in body posture of elite Para and able-bodied swimmers (spinal curvatures, ROM), to indicate the dominant locations of the compensatory mechanisms in the groups of Para and able-bodied athletes, and to identify and compare the prevalence and location of musculoskeletal pain from the last week and the last six months in the context of compensatory mechanisms. Methods Thirty-five (nF = 8; nM = 27; age = 20.51 ± 4.24) elite Para and able-bodied swimmers from the Polish national team took part in the study and were divided into: study group (SG) of Para swimmers and control group (CG) of able-bodied swimmers. Depth of the anteroposterior spinal curvatures and sagittal spinal mobility testing were evaluated with a Medi Mouse device. The prevalence and locations of musculoskeletal pain were assessed with a Nordic Musculoskeletal Questionnaire for the last seven days (NMQ-7) and the last six months (NMQ-6). Results In both groups lumbar hypolordosis, anterior pelvic tilt and pain in the shoulders, lower back and hips/thighs (NMQ-7) were reported the most frequent. In SG several significant relationships were found between duration of sport-specific training experience (years) and depth of angle the lumbar lordosis, the depth of the angle of pelvic inclination the ROM in the lumbar spine and thoracic spine, what was not reported in CG. Conclusions Extrinsic compensatory mechanism was identified in both study groups, however only in SG it occurred as structural (depth of the angle of lumbar lordosis and pelvic inclination) and functional changes (ROM in the thoracic and lumbar spine) in the body posture. Internal compensatory mechanism was identified in SG, however external compensation showed only partially suppressive character regarding to internal compensation. The locations of the musculoskeletal complaints seems to result from both internal compensatory mechanism (SG) and continuous overload of the anatomy trains as a result of swimming training (SG, CG).

Keywords